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Abstract

Next generation embedded systems will be composed of large numbers of heterogeneous
devices. These will typically be resource-constrained (such as sensor motes), will use different
operating systems, and will be connected through different types of network interfaces. Ad-
ditionally, they may be mobile and/or form ad-hoc networks with their peers, and will need
to be adaptive to changing conditions based on context-awareness. Our focus in this paper
is on the provision of a middleware framework for such system environments. Our approach
is based on a small and efficient ‘middleware kernel’ which supports highly modularised and
customisable component-based middleware services that can be tailored for specific embed-
ded environments, and are runtime reconfigurable to support adaptivity. These services are
primarily communications-related but also address a range of other concerns including service
discovery and logical mobility. In the paper we provide an overview of our approach, focus-
ing in detail on both the middleware kernel and the services. We also discuss an application
scenario in which we are currently applying and evaluating our middleware approach.
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1 Introduction

Miniature computing devices are being embedded in an increasing range of objects around us

including home appliances, cars, transport infrastructures, buildings, and people. Furthermore,

the networking of such embedded environments is enabling advanced scenarios in which devices

leverage off each other and exhibit autonomous and coordinated behaviour. Recent developments

in wireless networking are pushing these trends even further by enabling new applicative scenarios,

as witnessed by the recent surge of interest in wireless sensor networks.

However, research into such networked embedded environments has so far focused very much

on the development of miniaturised devices with increasingly powerful and general capabilities.

As a result, the software fabric that ultimately makes innovative applications possible has tended to

be overlooked. Instead, software is typically developed in an ad-hoc fashion, with little or no pro-

vision for reusable services and abstractions. Furthermore, even where attempts have been made

to provide such features, the range of devices involved in networked embedded environments in-

evitably leads to significant complexity in appropriately configuring, deploying, and dynamically

reconfiguring the software. There is therefore a need for dedicated middleware platforms for net-

worked embedded systems, with abstractions that can span the full range of heterogeneous systems,

and which also offer consistent mechanisms with which to configure, deploy, and dynamically re-

configure both system and application level software.

The work discussed in this paper is addressing the need for such middleware platforms. The

work is being carried out in the context of the EU-funded RUNES project (Reconfigurable, Ubiq-

uitous, Networked Embedded Systems), which has the general general goal of developing an ar-

chitecture for networked embedded systems that encompasses dedicated radio layers, networks,

middleware, and specialised simulation and verification tools.

Our middleware platform, which is at the heart of the RUNES architecture, is radically component-

based and encapsulates the functionality provided by its various components behind well-defined

interfaces. This decoupling not only enables one to deploy different variants of the same compo-

nent (e.g., tailored to a specific device type), but also enables dynamic reconfiguration of compo-
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nent instances and their interconnections. This provides support for dynamic adaptation to chang-

ing conditions—a fundamental requirement in the context-aware scenarios typical of networked

embedded systems.

Our approach to middleware provision comprises two distinct and orthogonal parts: First, we

provide a foundation layer—called the middleware kernel—which is the runtime realisation of a

simple but well-defined software component model. Second, we provide on top of the middleware

kernel a layer of component frameworks that offer a configurable and extensible set of middleware

and application services. In this two-layer architecture, the software infrastruture for a specific het-

erogenous, embedded networked system is achieved by providing an appropriate implementation

or implementations of the middleware kernel, and of the required configuration of middleware (or

application) services running on top of it.

The rest of the paper is organised as follows. Section 2 illustrates an example scenario that mo-

tivates and situates our work. Next, Section 3 introduces the concepts at the core of our middleware

kernel. Then, in Section 4 we discuss a number of key component framework based middleware

services that are built on top of the middleware kernel. Related work is surveyed in Section 5.

Finally, Section 6 offers our conclusions and plans for future work.

2 A Reference Scenario

Our design and development work is grounded in a number of networked embedded systems sce-

narios that we employ throughout the RUNES project. The best developed of these is a road

transport infrastructure based scenario in which a road tunnel is instrumented with sensors and ac-

tuators to detect and guard against potential disasters arising from events such as fire or chemical

spillage. More specifically, the road tunnel is instrumented with a number of sensors (e.g. temper-

ature sensors and sensors to detect toxic fumes) which feed back to a control room. In addition,

there are various actuators present such as fire sprinklers and road traffic management signs. These

sensors and actuators are interconnected using redundant network technologies—both wired and
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wireless—to maximise resilience in disaster situations. We also assume that potentially ‘danger-

ous’ vehices—e.g. those carrying dangerous chemicals—carry RFID tags and are detected and

tracked within the tunnel.

In the event of a disaster occurring, the sensor and actuator networks may become partitioned

and may thus need to reconfigure themselves to maintain their operational status. Furthermore,

sensor and actuator devices may need to be brought under the direct control of emergency per-

sonnel such as firemen, and this may require further ad-hoc networks to be established and may

additionally require that sensors be dynamically reprogrammed—for example, firemen may need

to poll sensor devices rather than wait for periodic push-based reports, and this may require new

software to be loaded onto the sensors.

Scenarios such as this are clearly highly heterogeneous. They involve a range of sensor and

actuator devices which may run different operating systems and be programmed in different pro-

gramming languages. They also clearly involve heterogenerous networks: wired, infrastructure-

based wireless, and ad-hoc wireless. Furthermore, such scenarios are highly dynamic—especially

during disasters—and thus require to be highly adaptive and reconfigurable. Networks must be

repaired, reconfigured and instantiated; new devices must be accommodated (e.g. devices on ve-

hices or attached to firemen); and new software must be loaded onto devices. These are precisely

the types of characteristics that our middleware platform is addressing.

3 The Middleware Kernel

This section discusses the two main elements of our middleware kernel, i.e., the component model

on which it is based (along with the associated notion of component frameworks, and the support-

ing runtime that makes it possible to manage the different entities defined in the component model

at run-time.
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3.1 The Component Model

The component model we propose is pictorially represented in Figure 1.

A component is an encapsulated unit of functionality and deployment that is an instantiation

of a componentType. For example, on a sensor node equipped with several temperature sensors,

each of these can be represented by a component that gets instantiated from a common “temper-

atureSensor” componentType. Instantiation is controlled by means of a pattern which selects a

componentType and describes the form in which it should be instantiated. As discussed in Section

4.1.4, componentTypes can also represent units of code mobility.

The functionality a component provides is made visible to other components through a set of

interfaces that the component provides. In addition, components can exploit functionality provided

by other components through the use of receptacles—i.e. ‘required’ interfaces that implicitly de-

fine a dependency relation among components. Components may also have name-value attributes

associated with them. A sample component with a pair of interfaces and receptacles is shown in

Figure 2.

When a component relies on the functionality provided by another, the two have to be explic-

itly associated with each other. This association is explicitly represented by a particular type of

component called a connector as shown in Figure 3(a). Connectors may simply pass on calls made

from the receptacle side to the interface side, or alternatively they may implement more advanced

semantics, e.g., that of monitoring and intercepting communications among the connected parties.

To this end, connectors may themselves support further interfaces and receptacles in order to use

external facilities (e.g. a “logger” mechanism to record data exchanged between the connected

components) or to provide functionality to other components (e.g., to allow other components to

monitor and potentially block communication).

Notice that the abstraction provided by connector components allows for distributed connec-

tions across different nodes. Indeed, a particular connector component could be implemented such

that operation calls are relayed to components running on a different machine, while the connector

itself takes care of the marshalling and unmarshalling of parameters and return values.
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Figure 1: The RUNES component model.
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Figure 2: A pictorial representation of a component with interfaces and receptacles.

(a) A pictorial representation of a connector component at the concep-
tual level.

(b) A connector component as it is actually bound to the components it is meant to
connect. The connector interfaces and receptacles mimic those of the components
bound.

Figure 3: The connector abstraction.

3.2 Component Frameworks

A component framework [20] (hereafter, CF) is an abstraction used for grouping components.

More precisely, a CF is an encapsulated composition of components that addresses some focused

area of functionality, and which accepts additional components as run-time plug-ins, which some-

how modify or extend the CF’s behavior. Notice that CFs are components themselves. Because of

this, a CF can contain other CFs in a recursive manner.

In practical terms, the goal of CFs is to help developers in composing components together

according to a set of constraints (e.g., defined in a specific language such as OCL [15]). For

instance, a component framework can represent a network stack, and hence require (at the very

minimum) the presence of a component implementing a “MAC” interface as well as a component

implementing a “routing” interface. A constraint can be defined over this grouping such that the

routing component can be stacked on top of the MAC component, but not vice-versa. Additionally,

a plug-in component implementing some form of reliability on top of the routing component can
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interface Capsule : ComponentFramework {
ComponentType load(in Pattern p) raises (CapsuleException);
void unload(in ComponentType t) raises (CapsuleException);
Component instantiate(in ComponentType t) raises (CapsuleException);
void destroy(in Component c) raises (CapsuleException);
Connector bind(in Interface i, in Receptacle r, in ConnectorType c) raises (CapsuleException);
void setAttribute(in Entity e, in Attribute a) raises(CapsuleException);
sequence<Attribute> getAttributes(in Entity e, in Pattern p) raises (CapsuleException);
sequence<Entity> getEntities(in Pattern p) raises (CapsuleException);

};

Figure 4: The API offered by the capsule.

be dynamically added to the CF if it meets the set of constraints present at the time it tries to enter

the CF.

The benefits of CFs are various. Firstly, they provide intermediate abstractions between compo-

nents and whole systems, thus acting as a scoping mechanism. Therefore, they generally increase

understandability and maintainability of systems. Secondly, they simplify component develop-

ment and assembly through design reuse and guidance to developers. Finally, they enable the use

of lightweight components (plug-ins), as these can assume shared CF-specific state and services.

For example, a plug-in component providing reliability on top of a routing mechanism might as-

sume that, in the CF it is meant to be plugged into, there will be at least a component implementing

a “routing” interface and a component implementing a “MAC” interface, and that those services

will be available through known interfaces.

3.3 The Runtime

The purpose of the runtime is to provide the machinery needed to load and unload component

types, instantiate and destroy components, and connect components together. All these operations

are accessed through the interface of a particular CF always present at every node called the cap-

sule, whose functionality is exported to the programmer via the capsule API shown in Figure 4

using OMG IDL [14].

The load() and unload() operations are responsible for dynamically loading and unload-

ing component types into and from the system, as well as for verifying these processes. Compo-
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nentTypes are described by the given ‘pattern’ which specifies a predicate over name-value pairs

attached to componentTypes.

The instantiate() and destroy() operations manage the lifecycle of components. The

former takes as its parameter a componentType from which an actual component is instantiated,

whereas the latter takes a component instance (that can possibly be even a connector) and destroys

it.

The connect() operation is responsible for establishing connections between pairs of com-

ponents. To this end, it takes an interface/receptacle pair, and the componentType of a connector

that express the required semantics of the connection. It returns an instance of a connector compo-

nent representing the connection.

The remaining operations are responsible for managing attributes associated with entities. In

particular, the setAttribute() operation allows insertion and removal of attributes (with the

removal operation achieved by setting an attribute with an undefined value); the getAttributes()

operation provides a list of all attributes associated with a particular entity that match a given pat-

tern; and the getEntitites() operation retrieves the set of all entities contained in the capsule

that have attributes matching the given pattern. These operations are also used internally by the

capsule for automatically inserting in an internal registry information on the operations performed

up to a given moment. For instance, when a component is instantiated, the capsule might insert in

the registry information on its name, the interfaces it provides, and the receptacles it defines.

The functionality offered by the capsule can be internally delegated to three underlying, inde-

pendent components, i.e. a loader component, a binder component and a registry component. In

addition, notice that the capsule itself (with its internal constituents binder, loader and registry) is

designed so that the functionality it is meant to provide can be implemented differently on differ-

ent devices, e.g., this might be realised as processes on a PDA, or as executable binary code stored

on a chip. This flexibility is key to handling the heterogeneity of the scenarios we target. Note,

however, that RUNES system builders who engineer systems out of existing components and CFs

only need to know the capsule API.
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Figure 5: A capsule with some CFs and components.

Finally, let us point out that, as the capsule is itself a CF, it can contain any kind of entity,

even further capsules. In this sense, the capsule defines a scoping mechanism very similar to set

containment, in which the capsule itself represents the outermost scope in which all the instances

of entities defined in the system live. This concept is graphically represented in Figure 5. However,

notice that a CF regards other CFs contained in it as simple components, i.e., it is not able to look

inside the CFs it contains and enforce its constraints on their content as well.

4 Middleware Services

Having described the middleware kernel, we now show how this can be leveraged to support var-

ious middleware services—i.e., services that can underpin application scenarios such as that de-

scribed in Section 2. In doing so, we show how our simple component model is adequate to build a

wide range of middleware services expressed as CFs which can be dynamically loaded, instantiated

and connected.

In the following sub-sections we first focus in detail on a key set of middleware services which

we have just implemented (i.e. the interaction, overlay, advertising/discovery and logical mobility

services). We then, for completeness, provide brief descriptions of the remaining services.
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Figure 6: Interaction CF.

4.1 Key Middleware Services

4.1.1 Interaction Service

The interaction service CF plays the crucial role of exporting middleware-level communications

services to applications. A middleware platform that offers only a single ‘interaction paradigm’

(e.g messaging or RPC) cannot cope with the diversity of requirements imposed by our target

application domain. Instead, a comprehensive solution needs to provide a wide range of interaction

paradigms including publish-subscribe, eventing, group communication, streaming, tuple-spaces,

etc. To address this requirement, the interaction CF supports plug-in interaction paradigms (called

PIPs for short). See Figure 6.

The design of the interaction CF is guided by the following principles:

• The selection, configuration the use of PIP components by application developers should

be as straightforward as possible, and their management should be based on a declarative

specification of the desired behaviour by the application programme.

• The API of each PIP should be independent of how it is implemented (for example, over

different network types and conditions.

• The (re-)configuration of PIPs should also be influenced by the current environmental con-

text such as available network infrastructure or other changing environmental conditions.

To help maintain a uniform “look-and-feel” for PIP APIs, the interaction CF defines an extensible

set of generic APIs which are intended to be useful for commonly-used families of PIPs (e.g. a

family of publish-subscribe PIPs). In cases where none of these generic APIs is suitable for a
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newly-developed PIP, the CF recommends the use of interface inheritance wherever possible to

specialise an existing API, thus avoiding a proliferation of top-level APIs.

To enable applications to select and configure PIPs, each PIP interface has attached to it a set of

name-value attributes that embody PIP-specific information such as name of the PIP, its purpose,

constraints on its use and the QoS it provides. Correspondingly, the receptacle of an application

component that wants to use a specific PIP has a set of predicates attached to it whose terms refer

to the attributes attached to potentially-matching PIPs. Then, when offered a receptacle by the

application (using the IConnect interface; see Figure 6), the interaction CF selects, instantiates

and configures a suitable PIP based on matching the application’s predicates with the attributes

exported by the set of currently installed PIPs. In addition, as well as application attributes, predi-

cates can refer to dynamic attributes that represent information provided by a context engine. For

example, this information may refer to the type of network the host machine is currently connected

to.

Having achieved a suitable match of application attributes, predicates, and dynamic attributes,

the CF creates a contract that records the particular values that were used in creating the match.

If this contract is violated during the use of the selected PIP by any of the three parties involved

(i.e. the application, the PIP and the context engine), an exception is raised. This can occur, for

example, if a dynamic attribute from the context engine changes; or if the application attempts to

renegotiate the contract by altering the predicates attached to its receptacle. Exceptions are initially

handled by the interaction CF itself, which attempts to restore the contract. If this attempt fails the

exception is passed on to the application.

An example PIP.

To exemplify the use of the interaction CF, we now briefly examine an example publish-

subscribe PIP. Figure 7 illustrates the component configuration of the PIP (which itself is im-

plemented as a CF). The PIP exports a generic publish-subscribe API that is pre-defined by the

interaction CF. The publish and subscribe components respectively provide the means for appli-

cations to publish and subscribe to events; the notifier component is in charge of notifying ap-
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Figure 7: Publish-Subscribe CF.

plication components about new events; the filter engine component implements an event parser

for matching events against the subscriptions; and the subscription table component manages the

subscription table.

It can also be observed in Figure 7 that the PIP is underpinned by plug-in overlay networks

which provide event routing and subscription routing. These are provided by the overlay CF (see

below). The event routing network is in charge of managing the broker network and routing events

over this network, while the subscription routing network manages the subscription tables deployed

in the broker network.

4.1.2 Overlay Service

The RUNES approach to the provision of network-layer communication is to uniformly abstract

all such support as plug-in overlay networks (see Figure 8). The benefit of this is that it allows
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Figure 8: Overlay CF.

us to treat diverse message routing protocols in a consistent manner whether or not the underly-

ing physical network supports the mechanism. This helps greatly in accommodating the network

heterogeneity we expect to support, as illustrated in Section 2. The overlay CF supports the in-

stantiation of stacks of overlay components so that new network behaviour can be built on top of

existing services.

Note that the overlay CF also employs the contract approach mentioned above (with respect to

the interaction CF). As the overlay CF can support stacks of overlays, the IConnect interface

is used recursively—i.e. each layer, having been instantiated, uses IConnect to instantiate the

layer below it. This process terminates with the instantiation of some “primitive” layer (e.g. IP).

The CF requires that its plug-ins are each internally structured as an CF containing (at least)

three separate elements1: a control element which encapsulates the distributed algorithm used to

establish and maintain the overlay structure; a forwarding element which encapsulates the for-

warding or routing algorithm itself; and a state element which gives access to generic state such

as a nearest neighbour list. For example, in the broker network from the publish-subscribe PIP

example above:

• The control component cooperates with the control components of its peer brokers on other

hosts to build and maintain the broker network topology. Together, these components encap-

sulate the distributed algorithms used to establish and maintain the broker network structure.

1Apart from these, additional components can be optionally included to extend the overlay’s behaviour, e.g. a
network QoS measurement component.
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Figure 9: Elements of overlay plug-ins.

• The forwarder component routes events over the broker network and implements specific

event forwarding strategies (e.g. different forwarding strategies can be provided as pluggable

forwarding components).

• The state component encapsulates key state such as nearest broker neighbours list, connected

clients list (i.e. publishers, subscribers).

The main benefit of this three-fold structure is that it can naturally support fine-grained lay-

ering and combining of multiple overlays so that, for example, different forwarding elements can

simultaneously be in operation over the same control elements (e.g. in a flooding overlay such

as Gnutella, we might simultaneously employ different flooding strategies over the same over-

lay topology). In addition, the use of common architectural elements ensures that we can repre-

sent generalised dependencies between overlays (as we can implement overlays to well-defined

common interfaces); and also we can easily perform fine-grained reconfiguration of individual

overlays; i.e. we can add or change the individual behaviour of an overlay as and when the envi-

ronmental context changes.

The three elements of each plug-in overlay interact within the individual CF as shown by the

bi-directional arrows in Figure 9. The exported interfaces and receptacles are used to express

dependencies on other overlay network implementations. The control component presents the

IControl interface with common operations to create, join and leave an overlay network. The

forwarding component has operations to route messages to nodes in the overlay network, send

messages to neighbour nodes, and receive any incoming messages. The control component also

exports an IForward receptacle to allow it to forward control messages via its own, or a different
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overlay’s, forwarding mechanism. Similarly, the control component exports an IDeliver inter-

face; this is used by lower-level overlays networks, which, when they receive a message, pass it to

the control component atop. Particular IDeliver implementations determine how to deal with

incoming messages (e.g., react to them, forward them etc.). Finally, the forwarding component

exports an IForward receptacle that allows it to directly forward messages using the underlying

implementation.

4.1.3 Advertising and Discovery Service

As new application components are dynamically added to systems to provide new services, there is

a need for mechanisms to enable applications to advertise and discover these components/services.

For instance, in the tunnel scenario of Section 2, one may deploy a new application component able

to perform aggregation on data stored at temperature sensors. Using the advertising and discovery

service (ADS), this new component can advertise itself to the rest of the system so that remote

nodes can be made aware of its presence and ask for its code if they need it (the latter functionality

is provided by the logical mobility service, described below).

There are many different ways to do advertising and discovery, and imposing particular mech-

anisms can hinder interoperability with other systems. Hence, in the spirit of the interaction and

overlay services already discussed, we provide a dynamic and flexible framework, which is based

on work described in [26].

The ADS CF is built around a set of interfaces called Advertiser, Advertisable, Discovery and

ComponentListener. Components that wish to advertise their presence implement the Advertisable

interface which exports a method that returns a message that the advertisable component uses to

express information that it requires advertised.

Advertiser interfaces are used to abstract over multiple advertising mechanisms implemented

inside so-called advertiser components. These are responsible for accepting messages from ad-

vertisable components, (potentially) transforming them into another format, and then actually per-

forming the advertisement in the appropriate manner. A combination of component availability
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notification and advertiser registration enables advertisable components to register to be notified

when specific advertisers are added to the system. Advertisable components can then register to

be advertised by them. Moreover, advertisable components can express that they require particular

advertisers. Thus, the semantics of the advertisable message are not a-priori defined but rather

depend on the advertisable component and on the particular advertising mechanism (i.e. the adver-

tiser component) used.

Note that a component can implement both the Advertiser and the Advertisable interfaces. This

allows for the advertising of advertising mechanisms; in this way, for example, the existence of a

multicast advertising group can be advertised using a broadcast advertiser. Combined with the use

of logical mobility (see below), this allows a host to dynamically acquire a new advertising and

discovery mechanism for a network that was just detected. For example, on approaching a Jini

network [23], a node can request and download the components that are needed to advertise to,

and use functionality from, this network.

Turning now to the ‘discovery’ side, different discovery techniques are encapsulated within

discovery components which implement the Discovery interface. There can be any number of dis-

covery components installed in a capsule. Discovery components act as registries of advertisable

components located remotely. So-called RemoteComponents’ are used to represent components

which have been found remotely. These do not directly export any functionality to local com-

ponents; rather, they only export methods needed to access their properties, and their location

and advertising messages. Hence, discovery components act as collectors of RemoteComponent

references, which can be added and removed dynamically as they are discovered.

Discovery components emit events representing the availability of remote components. Local

components can register a ComponentListener with a discovery component, to be notified when

components satisfying a given set of attributes are located. Users of the ADS CF can use the logical

mobility service (discussed below), to dynamically deploy advertising and discovery components,

as well as request, receive and deploy components that have been located remotely.
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4.1.4 Logical Mobility Service

‘Logical mobility’ refers to the ability to change the configuration of the software of a distributed

system by transferring logical units (in our case, primarily ComponentTypes) between nodes. Log-

ical mobility has been repeatedly argued [3, 9, 17] to have great potential in the engineering of

mobile systems. In summary, the arguments are as follows:

• It allows applications to update their codebase, and hence acquire new functionality.

• It may permit interoperability with remote applications and environments, which had not

been envisioned at design time.

• It potentially achieves the efficient use of peer resources, as computationally expensive cal-

culations can be offloaded to the environment.

• It facilitates the efficient use of local resources, as infrequently-used functionality can be

removed to free some of the limited memory that mobile devices are equipped with. The

functionality may potentially be retrieved later when needed.

• It can be used to encapsulate, request and transfer functionality between nodes; hence it is a

tool that can be used to create adaptable systems.

• By allowing functionality to be retrieved locally, it allows for autonomous operation instead

of relying on an externally provided service.

The main purpose of our logical mobility service (LMS) is to allow the system to dynamically

reconfigure by acquiring functionality from its peers. This component framework is based on work

reported in [26].

The Logical Mobility Unit.

A logical mobility unit (LMU) (see Figure 10) is defined as the minimal unit of transfer. An

LMU is a container that can encapsulate various constructs and representations of code and data2.
2Note that Figure 10 presents the framework as an object-oriented one. In implementations in which classes and

objects are not available, other constructs (such as dynamic libraries) are used.
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key : DataType
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getValue() : DataType
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LogicalMobilityEntity

Class

Handler

DataType
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setValue(value: DataType) : void

0..*
properties

0..1

handler

1..*
0..*

Figure 10: The Logical Mobility Unit.

As such, an LMU is, in part, a composition of an arbitrary number of logical mobility entities

(LMEs). The LMU provides operations that permit inspection of contents. This allows a recipient

to inspect an LMU before using it.

The LMU can potentially encapsulate a Handler which can be instantiated, and the resulting

object used by the recipient to deploy and manipulate the contents of the LMU. This can allow

sender-customised deployment and binding. The Handler concept is taken from [16].

An LMU also encapsulates a set of attributes. These are used to describe the LMU they are

associated with—e.g. in terms of logical (software) or physical (hardware) dependencies, digi-

tal signatures and even end-user textual descriptions. As such, they are useful in managing the

heterogeneity of the target environment.

Transferring LMUs.

Deployer components handle the sending and receiving of LMUs and offer functionality such

as the following: serialising and deserialising the LMU; checking incoming LMUs for malicious

code; checking whether a target host is trusted to send sensitive code; handling namespace conflicts

with incoming LMUs; and eploying incoming LMUs. Note that some of this functionality can be

implemented in various ways (such as proof carrying code and digital signatures) and is optional.
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Deployers offer an API that allows sending and receiving LMUs. If it is available, they can

interact with the ADS CF to allow the requesting and deploying of RemoteComponents.

Deploying LMUs.

When transferring an LMU to a target host, we need to define where, logically, the LMU will

be deployed. In terms of the RUNES middleware, a valid logical target is a component. As such,

the LMS defines an adaptable component as a component that can receive LMUs at runtime. We

represent these components as components that implement the Adaptable interface.

By default, LMUs are deployed in capsules - this allows components to be encapsulated in

LMUs and deployed dynamically. If this is not the intent of the sender, alternative components can

be specified. This allows for adapting individual components with another codebase.

4.2 Other Key Middleware Services

We now briefly describe some other component frameworks that play key roles in the RUNES

middleware platform.

Local OS Service As already mentioned, our component model can “reach down” into layers be-

longing to the operating system. This way, we provide a unified abstraction on top of which

mechanisms ranging from MAC layers up to application components can be realized. To this

end, the local OS service aims at providing a collection of services that realize an abstraction

layer over operating system functionalities. For instance, components implementing differ-

ent scheduling policies or memory management techniques can be provided within this CF.

As intra-layer integration is of paramount importance on constrained embedded devices [1],

having operating system functionalities exported thorugh the same abstraction used to de-

velop applications clearly fosters the exploitation of information provided by lower layers.

For instance, an application component might adjust the communication range on a sensor

device by modifying the tranmission power.

Context and Location Sensing Service Networked embedded systems are envisioned to operate
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unattended and in a manner that is closely integrated with the physical environment. In such

scenarios, the system needs to sense the surrounding conditions and perform adaptation if

needed. To this end, mechanisms are needed for sensing the context in which the system

is operating and providing this information to other components (e.g. the interaction and

overlay services as discussed above) so that they can suitably adapt their behaviors. As

other examples, a device equipped with a GPS receiver can detect movement and inform

components interested in this fact on the new position. The goal of the context and location

sensing service is to provide a unified abstraction of all such functionaly, so as to shield other

components from low-level implementation details.

Sensor Coordination Service Various kinds of coordination are needed in sensor networks. For

instance, time synchronization is necessary to precisely relate sensed events, or to coordinate

sleep periods when sensor devices turn their radio off. However, general coordination in

large-scale distributed systems composed of constrained devices is hard to achieve. The goal

of the sensor coordination service is to provide efficient coordination mechanisms designed

for being integrated with the rest of the framework we propose. In particular, it is designed

in a way that facilitates its integration with other components so that coordination can be

exploited at different levels, from the operating system up to the application.

5 Related Work

There is a substantial body of literature on reconfigurable middleware systems. First, the RUNES

middleware builds on our earlier work on the OpenCOM component model [5]. Compared to this

earlier work, there in an increased emphasis in RUNES on a formal, model-driven, approach; and

on specialisation to the networked embedded systems domain. Apart from this, Gravity [4] is a

component model built on top of the Open Services Gateway Initiative (OSGi) Framework [21]

(OSGi is a commercial framework for the Java platform which allows providers to deliver services

to consumer devices attached to a residential network and to manage those devices remotely).
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P2PComp [8] is a lightweight service-oriented component model for mobile devices, which is also

built using OSGi; it provides location independent synchronous and asynchronous communica-

tion between components. The Dynamically Programmable and Reconfigurable Software (DPRS)

architecture [18] is a component-based design for dynamically programmable and reconfigurable

systems. PCOM [2] is a distributed component model for pervasive computing. It allows for de-

signing applications as a collection of potentially distributed components, which make their depen-

dencies explicit. If those dependencies are invalidated, PCOM can attempt to automatically adapt

by detecting alternatives according to various strategies. FarGo-DA [24] is a distributed compo-

nent model that uses logical mobility to allow disconnected operation. The Software Dock [11] is

an agent-based software deployment network that allows negotiation between software producers

and consumers. THINK [7] presents an approach for building component-based operating system

kernels. And finally, one.world [10] is a system for pervasive applications that supports dynamic

service composition, migration of applications and discovery of context.

Other component based systems from the embedded systems community are Pebble [13],

PECOS [25], PBO [19], SaveCCM [12] and Koala [22]. Most of these are build-time only

technologies-components are not visible at run-time and therefore these systems do not support

dynamic reconfiguration. One area that some of these systems (i.e. PECOS and PECT) do support,

however, that our model does not natively support, is the specification (at build-time) of real-time

constraints such as cycle time or worst case execution time. Such facilities are clearly important

in certain real-time critical areas. Our approach to providing such facilities, where needed, is to

provide a suitable ‘real-time systems’ CF rather than building-in real-time properties into the pro-

gramming model itself. A further observation is that many of these embedded systems technologies

(e.g. PBO, SaveCCM, and Koala) are tightly coupled to an specific underlying OS environment

and/or are programming language specific.

There are two main difference between the approaches outlined above and our work. The

first difference relates to generality: RUNES is a generic software fabric that is designed from

the ground up to be implementable on a wide range of devices, and the primitives we provide are
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not limited to, for example, disconnected operation or software deployment or real-time support,

but can indeed be used to build such services. The second difference relates to our two-layer

architecture in which systems are built by selecting (and dynamically reconfiguring) appropriate

CF-based middleware services on top of the middleware kernel. This capability, which is lacking

in lacking in other work, results in significantly greater flexibility than other systems offer.

6 Conclusions

In this paper we have described the RUNES approach to the development of software for net-

worked embedded systems. This employs a uniform “software component” abstraction which can

be variously realised in various types of devices. Then, on top of the basic component model, we

layer the notion of component frameworks which realise various areas of functionality that can be

configured-in or left out as required. We have shown in the paper how these abstract notions can be

instantiated as useful and general functionality, both local and distributed, in adaptive networked

embedded environments.

The current status of our work is that we have implemented the middleware kernel in two

different languages (Java and C) and have deployed it on devices ranging from PCs to PDAs to

tiny sensor devices running the Contiki OS [6]. We have thus verified that our approach is viable

even in extremely resource-constrained environments. We have also implemented the four main

middleware services described in the paper and deployed these in a demonstration scenario based

on that outlined in Section 2. This work has convinced us of the generality and utility of our

approach.

In our future work we are looking to further explore the adaptivity and reconfigurability capa-

bilities of our middleware. This will especially involve the dynamic deployment and adaptation of

new PIPs and overlays in the tunnel fire scenario.
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