
Towards a Mobile Computing Middleware:
a Synergy of Reflection and Mobile Code Techniques

Licia Capra, Cecilia Mascolo, Stefanos Zachariadis and Wolfgang Emmerich
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{L.Capra|C.Mascolo|S.Zachariadis|W.Emmerich}@cs.ucl.ac.uk

Abstract

The increasing popularity of wireless devices, such as
mobile phones, personal digital assistants, watches and the
like, is enabling new classes of applications that present
challenging problems to designers. Applications have to
be aware of, and adapt to, frequent variations in the con-
text of execution, such as fluctuating network bandwidth,
decreasing battery power, changes in location or device ca-
pabilities, and so on. In this paper, we argue that middle-
ware solutions for wired distributed systems cannot be used
in a mobile setting, as the principle of transparency that
has driven their design runs counter to the new degrees of
awareness imposed by mobility. We propose a synergy of
reflection and code mobility as a means for middleware to
give applications the desired level of flexibility to react to
changes happening in the environment, including those that
have not necessarily been foreseen by middleware design-
ers. We use the sharing and processing of images as an
application scenario to highlight the advantages of our ap-
proach.

1. Introduction

In the past decade, middleware technologies built on top
of network operating systems have greatly enhanced the de-
sign and implementation of distributed applications. In par-
ticular, they succeeded in hiding away many requirements
introduced by distribution, such as heterogeneity, fault tol-
erance, resource sharing, and the like, from application de-
velopers, offering them an image of the distributed system
as a single integrated computing facility.

Recent advances in wireless networking technologies,
such as WaveLan and Bluetooth, and the growing success
of mobile computing devices, such as third generation mo-
bile phones and PDAs, have opened up the door to new

classes of distributed applications that impose challenging
problems to developers. Wireless devices face temporary
loss of network connectivity when they roam; they need to
discover other mobile devices in an ad-hoc manner; they are
likely to have scarce resources, such as low battery lifetime,
slow CPU speed, etc. Applications running on these devices
have to be aware of, and adapt to, frequent and unannounced
changes happening in their execution environment, such as
high variability of network bandwidth, new physical loca-
tion, and so on.

Middleware solutions developed for wired distributed
systems cannot be successfully applied in this scenario, as
the principle of transparency that has driven their design
runs counter to the new degrees of awareness imposed by
mobility. Transparency takes away complexity by allow-
ing middleware to take decisions on behalf of the applica-
tion. The application, however, can normally make more
efficient and better informed trade-off decisions on the use
of resources by taking into account application-specific in-
formation.

We believe that middleware capable of supporting the
development of mobile applications will play a key role in
the success of wireless technologies and mobile applica-
tions, the same way traditional middleware did for wired
distributed systems.

In this paper, we propose a mobile computing middle-
ware that support awareness and high adaptation to context
changes, based on the synergistic combination of the prin-
ciples of reflection [17] and mobile code [9]. We argue that
this synergy provides the flexibility that mobile computing
middleware must have to cope with both foreseen (through
reflection) and unforeseen changes (through code mobility).
It improves the ability to exploit scarce resources that mo-
bile devices are often faced with, together with the ability to
take advantage of the temporary proximity of services and
other hosts.

The paper is organized as follows: in Section 2 we intro-

duce the basic concepts that have driven the design of our
middleware, that is, reflection and code mobility. Section 3
describes the conceptual model in details and Section 4 il-
lustrates a mobile computing application in the area of im-
age processing and exchange on which we are working with
the support of Kodak. In Section 5 we discuss and evaluate
our work and in Section 6 we conclude the paper and list
future work.

2. Why Reflection and Mobile Code Tech-
niques

In this section, we introduce the basic principles that
have driven the design of our mobile computing middle-
ware.

Applications running on a mobile device need to be
aware of, and adapt to, changes in their execution con-
text. By context, we mean everything that can influence the
behaviour of an application. Under this general term, we
can identify two more specific levels of awareness:device
awarenessandenvironment awareness. Device awareness
refers to everything that resides on the physical device that
hosts the application; for example, memory, battery power,
screen size, processing power and so on. We call these en-
tities internal resources. Environment awareness refers to
everything that is outside the physical device, that is band-
width, network connectivity, location, other hosts (or ser-
vices) in reach, and so on. We call these entitiesexternal
resources.

On one hand, being aware of the execution context re-
quires the designer to know, for instance, the location of
the device, the hosts in reach, and, in general, any piece
of information that is collected from the network operating
system. On the other hand, we do not want the application
designers to build their applications directly on the network
OS, as this would be extremely tedious and error-prone;
therefore, a middleware has to be put in place. The middle-
ware must interact with the underlying network operating
system and update information about the execution context
in its internal data structures. This information has to be
made available to the applications, so that they can listen to
changes in the context (i.e.,inspectionof the middleware),
and influence the behaviour of the middleware accordingly
(i.e.,adaptationof the middleware).

Reflection is the means we provide applications to exploit
contextual information and adapt middleware behaviour
accordingly.By definition [6], reflection allows a program
to access, reason about and alter its own interpretation. The
principle of reflection has been mainly adopted in program-
ming languages, in order to allow a program to access its
own implementation. In a middleware context, reflection
permits the flow of environmental information, such as the
hosts/services currently in reach, the remaining battery life-

time, the location, and the bandwidth conditions, to reach
the application layer. Moreover, through reflection the ap-
plication can instruct the middleware on how to behave
in those conditions that the middleware designers consider
likely to be unstable.

Code Mobility allows adaptation of middleware be-
haviour to situations that have not been foreseen at design
time. In a mobile ad-hoc setting, middleware designers can-
not forecast all the possible context configurations that a
mobile application is going to be in. Moreover, application
needs may change during its lifetime, and situations that
were not considered critical for the system at design time,
may later need to be faced using different strategies. It is
therefore not feasible to load all possible behaviours on the
device, in order to deal with any context configurations, be-
cause these behaviours are not known a priori, and anyway
this would require a huge amount of memory that portable
devices do not have. Mobile code offers a reasonable al-
ternative, which also enhances the use of scarce memory.
New behaviors can be delivered from time to time, and
downloaded when needed, either from a service provider
or from other peers in reach which use the same behaviour,
using mobile code techniques. This requires the hosts that
are in reach to exchange information about what services,
code and resources are available, in order to download pro-
tocols and exploit resources. Reflection can be combined
with mobile code techniques to allow applications to se-
lect, for example, from where to download protocols, based
on application-specific information (e.g., choose the most
trusted host, the nearest site, etc.).

To illustrate how reflection and code mobility can be
combined, we can consider a simple but effective example.
Middleware designers may offer applications two different
behaviours to access remote data: a ‘copy’ behaviour that
replicates remote data locally and work on local copies; and
a ‘link’ behaviour that creates a network reference to the
master copy and then accesses it remotely. Applications
use reflection to dynamically adapt middleware behaviour
to their needs; for example, they can instruct middleware
to copy data in conditions of high memory availability and
low bandwidth, and to link data when network bandwidth is
instead high and stable, but the host is running out of mem-
ory. The application may then find itself in a situation of
high memory and high, but expensive, network bandwidth
(e.g., GSM charges users for the amount of time they re-
main connected, and UMTS for the amount of network traf-
fic produced). The copy procedure may not be suitable any-
more if we have to transfer a considerable amount of data, as
it requires time, ad therefore money. A smarter behaviour
would be to transfer compressed data, in order to reduce
both the downloading time and the traffic moved around.
However, if this situation has not been foreseen, middle-
ware does not have locally this behaviour, and it might be

necessary to obtain the newly delivered protocol implemen-
tation from peers in reach.

Thus, the combination of reflection and mobile code en-
ables middleware to cope with both foreseen and unforeseen
changes in the context. In the next section, we illustrate how
to use these principles in practice.

3. Our Mobile Computing Middleware

In this section, we illustrate how reflection and mobile
code techniques are integrated in our mobile computing
middleware.

In order to allow applications to dynamically change
middleware behaviour, and to let the middleware under-
stand and apply this behaviour, the two layers have to agree
on a specific format for this information. We believe that the
eXtended Markup Language (XML)[5], and related tech-
nologies (in particular XML Schema [7]) can be success-
fully used to encode what we callapplication profile, that
is, meta-information that, for each application, associates
policies (i.e., middleware behaviour) to context configura-
tions. In our scenario, middleware dictates thegrammar,
that is the rules that must be followed to write profiles, in
an XML Schema definition; the application designer then
encodes the profile in an XML document that is a validin-
stanceof the grammar. Every change done later to the pro-
file must respect the grammar, and this check can be easily
performed using available XML parsers.

To understand what information to encode, we distin-
guish two different ways in which the application influences
the behaviour of the middleware.

Policy

Internal
Resource

External
Resource

*

Service

Policy
*

* *

Aware Set−up
Context

Context

*

Service Request
Application

Configuration Configuration

Figure 1. Application profile.

1. Changes in the execution context.The application
can ask the middleware to listen to changes in the execution
context and react accordingly, independently of the task the
application is performing at the moment. For example, the
application may ask the middleware to disconnect when the

bandwidth is fluctuating, or when the battery power is too
low. We establish an association between particular con-
text configurations that depend on the value of one or more
resources the middleware monitors, and policies that have
to be applied, as shown on the right-hand side of Figure 1.
Figure 2 illustrates a simple example of an XML document
for this kind of information.

<RESOURCE name="battery">
<STATUS operator="lessEqual" value=x/>
<BEHAVIOUR policy="disconnect"/>

</RESOURCE>

Figure 2. XML encoding of a context aware
set-up.

Middleware interacts with the underlying network oper-
ating system in order to keep an updated configuration of
the context. Whenever a change in the context happens, it
looks up in the application profiles of running applications
whether one or more of them have registered an interest in
the changed resources, and triggers the corresponding ac-
tions.

2. Service request.The application can ask the mid-
dleware to execute a service; for example, to access some
remote data it has not cached locally. There are many dif-
ferent ways a service can be provided; for example, the ser-
vice ‘access data’ can be delivered using at least two dif-
ferent policies, ‘copy’ and ‘link’, as discussed in the pre-
vious section. The circumstances under which an applica-
tion may want to use them are different: a physical copy
of data may be preferred when there is a lot of free space
on the device, while a link may become necessary when
the amount of available memory prevents us from creating
a copy, and the network connection is good enough to al-
low reliable read and write operations across it. Therefore,
for every service the application may ask the middleware,
the application profile specifies the policies that have to be
applied and the requirements that must be satisfied in order
to choose which of them to apply. These requirements are
expressed in terms of the execution context (left-hand side
of Figure 1). Figure 3 gives an example of how to express
this information in the application profile using XML.

For the reflective principle, middleware must grant ap-
plications dynamic access to their profiles. A reflective
API is therefore provided that exploits the Document Object
Model (DOM) [1] API to give applications access to the tree
representation of their profile. Whenever a profile is modi-
fied, the middleware runs a validating parser that parses the
document and checks whether it is a valid XML instance of
the grammar provided by the middleware to the application
(e.g., it checks whether the selected policy is contemplated
in the Schema definition).

<SERVICE name="accessData">
<BEHAVIOUR policy="copy">

<RESOURCE name="memory">
<STATUS operator="greaterEqual" value=x/>

</RESOURCE>
</BEHAVIOUR>
<BEHAVIOUR policy="link">

<RESOURCE name="bandwidth">
<STATUS operator="greaterEqual" value=y/>

</RESOURCE>
<RESOURCE name="memory">

<STATUS operator="less" value=x/>
</RESOURCE>

</BEHAVIOUR>
</SERVICE>

Figure 3. XML encoding of an application ser-
vice request.

As we have argued in Section 2, reflection allows ap-
plications to react to foreseen changes in the environment;
however, particularly in ad-hoc settings, there may be many
unforeseen changes that require the adoption of new be-
haviours that were not considered at design time. We there-
fore extend our model with the use of mobile code tech-
niques. Code mobility provides higher degrees of flexibility
as it allows hosts to dynamically download new behaviours
when needed. It is now necessary to specify, for each pol-
icy, where the middleware can find the code of the corre-
sponding algorithm, in case it is not already on the device
and therefore it must be downloaded on demand from one
of the hosts in reach, if possible1.

Figure 4 shows how the application profile defined in
Figure 3 can be refined to support the new model.

<SERVICE name="accessData">
<BEHAVIOUR policy="copy">

<RESOURCE name="memory">
<STATUS operator="greaterEqual" value=x/>

</RESOURCE>
<CODE name="copy" fromhost="nearestHost"/>

</BEHAVIOUR>

<BEHAVIOUR policy="link">
<RESOURCE name="bandwidth">

<STATUS operator="greaterEqual" value=y/>
</RESOURCE>
<RESOURCE name="memory">

<STATUS operator="less" value=x/>
</RESOURCE>
<CODE name="link" fromhost="*"/>

</BEHAVIOUR>
</SERVICE>

Figure 4. XML encoding of an application ser-
vice request with code mobility specification.

Note that the model is very general as it allows the appli-
cation to specify, for instance, from which ‘kind’ of hosts

1Some default behaviours are defined in order to handle “code not
found” exceptions.

the behaviour can be fetched. For example, in Figure 4
the profile explicitly states that the ‘copy’ protocol can be
fetched from the nearest host that has it. As for the linking
behaviour, the ‘*’ key is used to specify that the middleware
is free to load the code from any host in reach. Other pos-
sibilities include the definition of a specific IP address (to
select, for example, a trusted service provider) or keywords
that identify classes of hosts, such as ‘PC’2.

The discovery of new policies happens during peer-to-
peer interactions. First, base stations advertise to the hosts
in reach new available policies for specific services; this
means that the XML Schema definition on the hosts in reach
is updated to include the name of the new behaviours. How-
ever, we do not require the hosts to load the correspond-
ing code too, as it may not be possible immediately due to
memory limitations. Mobile hosts may then move away and
form ad-hoc networks with other hosts; during interactions,
the Schema definition of these peers is updated. However,
as the code is not carried around all the time, it is possi-
ble for the application to write valid profiles which speci-
fies policies not available locally. If that happens, the mid-
dleware can exploits the meta-information contained in the
profile to fetch it.

In the next section, we show an industrial application
scenario in the area of image sharing, collaboration and up-
loading, which we use to describe the use of our approach
in a mobile setting.

4. An Application Scenario

In this section we present an example in the context
of image processing and image based services that we are
partly developing with Kodak. Our goal is to illustrate how
reflection and mobile code techniques may provide the flex-
ibility required by mobile computing middleware.

Let us consider a number of mobile devices (cameras,
smart phones, PDAs and laptops) that are able to communi-
cate through an ad-hoc network infrastructure. Some base
stations equipped with fixed network connectivity, Internet
facilities and high resolution displays are also present. Mo-
bile devices store pictures in their memory. Pictures may be
shared among devices and may be displayed and shipped
through the Internet to base stations, in order to be perma-
nently stored in some available database (Figure 5).

The sharing, displaying, shipping and uploading of the
images may happen in many potentially different ways, ac-
cording to the current network availability and the devices
involved, as they greatly vary in terms of memory, process-
ing power, etc. Different compression, rendering, loading,
shipping, linking, caching protocols may have to be used by
the middleware.

2It is up to the middleware layer to have some ways of resolving the
name ‘PC’.

Image

Figure 5. The image sharing scenario.

In this scenario, the middleware cannot transparently
choose which protocol to apply based on the current config-
uration of the execution context, as the applications possess
vital knowledge that must be exploited during this choice.
For example, an application may want to persistently store
on a remote database only a specific subset of the images
the device is carrying, in order to save battery power, and
the middleware has no way to guess this subset. We believe
reflection can be used to allow applications to inspect con-
textual information and to change middleware behaviour ac-
cordingly at run-time. In this way, applications have a say in
which way images are handled, shipped, cached or linked.

However, reflection alone is not enough. The devices are
not able to know a-priori which protocols they are going to
need in which situation, and which other devices they are
going to encounter. Devices cannot load all the possible
behaviours into memory, due to memory constraints; more-
over, new behaviours may be delivered from time to time to
cope with unforeseen context configurations and new appli-
cation needs. Therefore, reflection and mobile code tech-
niques have to be combined.

Figure 6 illustrates how an application can influence
middleware behaviour when loading and displaying an im-
age. As discussed in Section 3, the profile contains two es-
sential types of information: which policy the middleware
has to apply when executing in a particular context configu-
ration, and from where to fetch the code of the policy, if not
found locally.

As the picture shows, the first policy describes how the
loading of an image should happen when memory is rela-
tively high. The protocol that must be applied (i.e., ‘load’,
as specified by the tagCODE) can either be found on the
host or fetched remotely fromany peer (as shown by the
use of the ‘*’ key). The second policy defines a way of
loading and seeing the picture in fragments, when mem-
ory is low. In this case, if the code for thefragmented-
load cannot be found locally, it can only be fetched from
the host corresponding to the specifiedIPaddress , for
example, a trusted base station. The third policy allows the
load and display of an image on a more powerful host, if
there is one in reach and the network bandwidth is good
enough to allow the shipping. Protocols for proper decom-

<SERVICE name="displayPicture">
<BEHAVIOUR policy="load">

<RESOURCE name="memory">
<STATUS operator="greaterEqual" value=x/>

</RESOURCE>
<CODE name="load" fromhost="*"/>

</BEHAVIOUR>

<BEHAVIOUR policy="fragmentedload">
<RESOURCE name="memory">

<STATUS operator="less" value=x/>
</RESOURCE>
<CODE name="fragmentedload" fromhost=IPaddress/>

</BEHAVIOUR>

<BEHAVIOUR policy="remote">
<RESOURCE name="bandwidth">

<STATUS operator="greaterEqual" value=y/>
</RESOURCE>
<RESOURCE name="remotedisplay">

<STATUS operator="inreach" />
</RESOURCE>
<CODE name="remote" fromhost="nearestHost"/>
<UPLOAD>

<CLASS name="decompress"/>
<CLASS name="decrypt"/>

</UPLOAD>
</BEHAVIOUR>

</SERVICE>

Figure 6. XML encoding of policy settings in
the image processing example.

pression/decryption of the image may need to be uploaded
with the image to the remote host as well. These protocols
can be specified in the behavioral description under the tag
UPLOAD.

More complex situations can be modeled, where the be-
haviour of the middleware depends not only on the current
context configuration but also on the particular data it is
managing. Pictures, in fact, have a header of meta-data
describing picture details and compression characteristics.
Applications could exploit this information to write more
sophisticated profiles in which they specify which compres-
sion/cropping/encryption modules the middleware should
use to handle a particular type of image, instead of moving
high resolution images around with no need.

5. Discussion and Related Work

We have described a middleware for mobile comput-
ing based on the principle of reflection and code mobility.
Through reflection, we allow applications to adapt middle-
ware behaviour dynamically, but only in the case of fore-
seen situations. Mobile code techniques add new level of
flexibility as they allow adaptation of middleware to unfore-
seen situations too; moreover, they support a better exploita-
tion of scarce resources (e.g., memory) typical of hand-held
devices.

The use of reflection and mobile code in the context of
mobile computing is however not new. The principle of re-

flection has already been investigated by the middleware
community during the past years, mainly to achieve flexi-
bility and dynamic configurability of the ORB. Examples
include OpenCorba [16], dynamicTAO [13] the work done
by Blair et al. [6], etc. Even though we adhere to the idea
of using reflection to add flexibility and dynamic config-
urability to middleware systems, the platforms developed
to experiment with reflection were based on standard mid-
dleware implementations (i.e., CORBA), and therefore not
suited for the mobile environment.

Researchers have also focused on how to use code mo-
bility to exploit mobile devices capabilities and constrained
conditions better. Some work in this direction has been car-
ried out in [3, 15, 14], where mobile agents [12, 27], a spe-
cialized version of mobile code with autonomous compo-
nents, are used in mobile computing settings to overcome
the problem of intermittent network connectivity.

We believe that not only agents but mobile code in gen-
eral can be useful in mobile computing and that code mobil-
ity and mobile computing research areas are more and more
destined to meet.

Other middleware systems have been built to support
mobility, without using the reflective principle or code mo-
bility. However, we observe that only partial solutions have
been developed to date, mainly focused on providing sup-
port for location awareness (e.g., Nexus [8] and Teleport-
ing [4]) on one hand, and for disconnected operations and
reconciliation of data on the other hand (e.g., Bayou [21]
and Odyssey [22]).

Tuple space coordination primitives, initially suggested
for Linda [10], have been employed in a number of mobile
middleware systems such as JavaSpaces [26], Lime [20],
and T Spaces [11], to facilitate component interaction for
mobile systems. Although addressing in a natural manner
the asynchronous mode of communication characteristic of
ad-hoc and nomadic computing, all these systems are bound
to very poor data structures (i.e., flat unstructured tuples),
which do not allow complex data organization and there-
fore can hardly be extended to support metadata and reflec-
tion capabilities. We believe that XML, and in particular its
associated hierarchical tree structure, allows semantically
richer data and metadata formatting, overcoming this limi-
tation.

6. Conclusions and Future Directions

The growing success of mobile computing devices and
networking technologies, such as WaveLan [25] and Blue-
tooth [19], call for the investigation of new middleware that
deal with mobile computing requirements, in particular with
context-awareness. Our goal in this paper has been to out-
line a global model for the design of mobile middleware
systems, based on the principle of reflection and mobile

code techniques.
The choice to use XML to represent metadata comes

from our previous experience withXMIDDLE [18], an
XML-based middleware for mobile systems that focuses
on data reconciliation and synchronization problems and
solves them exploiting application-specific reconciliation
strategies. Our plan is to extend the previously built proto-
type to fully support the model presented here. At present,
the middleware interaction with the network operating sys-
tem in order to capture contextual information is quite lim-
ited in our prototype; however we have clear ideas on how
this could be extended using for example, the Mobile Infor-
mation Device Profile (MIDP) [24], that is part of the Java
2 Platform Micro Edition [23]. MIDP is a set of Java APIs
which provide a runtime environment targeted to mobile in-
formation devices, such as cellular phones and PDAs. The
MIDP specification addresses issues such as user interface,
persistence storage, networking, and application model.

We have discarded the idea of implementing our model
upon Jini [2], an architecture that allows groups of devices
and software components to federate into a single, dynamic
distributed system, enabling dynamic discovery of services
inside the network federation. The reason for this choice is
that Jini targets nomadic networks; it assumes in fact the ex-
istence of a core of fixed hosts which provides mechanisms
for devices, services and users to join and detach from a
network in an easy and natural, often automatic, manner.
Moreover, it relies on the existence of a network of rea-
sonable speed connecting Jini technology-enabled devices
that have some memory and processing power. Although
we have given in this paper an example of application for a
nomadic setting, we do not want to constraint ourselves to
this scenario. We therefore think thatXMIDDLE represents
a better starting point for our needs, as it targets pure ad-hoc
networks.

Apart from extending our prototype, our plans for the fu-
ture include more fundamental research issues. In this paper
the main form of code mobility we have discussed is “code
on demand”; however, we believe that the combination of
different mobile code techniques could enhance our model.
In some cases, for example, migrating the computation run-
ning on a mobile device to a close and more powerful host
could improve performance. We are also working on some
infrastructure for advertisement of “resource leasing”, so
that application code can move among hosts in reach to ex-
ploit more powerful resources in an ad-hoc manner.XMID -
DLE already supports the exchange of information, such as
services, code and resources available, between peers, so
that hosts in reach are able to exchange protocols and ex-
ploit resources.

Another major issue is safety. What happens if two ap-
plications ask the middleware to behave differently when
executing in the same context? What if the same applica-

tion requires conflicting behaviors when changes related to
different resources happen at the same time (e.g., “discon-
nect when battery is low” vs. “connect when bandwidth is
high”)? What if the behaviour requested cannot be found
neither locally nor on the hosts in reach? All this questions
are currently under investigation.

In a context of mobile code, security plays a very impor-
tant role. In the model and prototype we developed until
now security issues are not addressed. We however plan to
look into them

Acknowledgements We would like to thank Kodak and
in particular Karen Lawson for providing the applica-
tion scenario illustrated in the paper. We also thank Jon
Crowcroft and Richard Gold for the helpful discussion on
some of the ideas described in this paper.

References

[1] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Ja-
cobs, A. L. Hors, G. Nicol, J. Robie, R. Sutor,
C. Wilson, and L. Wood. Document Object Model
(DOM) Level 1 Specification. W3C Recommenda-
tion http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001, World Wide Web Consortium, Oct. 1998.

[2] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini[tm] Specification. Addison-Wesley,
1999.

[3] P. Bellavista, A. Corradi, and C. Stefanelli. Mobile Agents
Middleware for Mobile Computing. IEEE Computer,
34(3):73–81, 2001.

[4] F. Bennett, T. Richardson, and A. Harter. Teleporting - mak-
ing applications mobile. InProc. of the IEEE Workshop on
Mobile Computing Systems and Applications, pages 82–84,
Santa Cruz, California, Dec. 1994. IEEE Computer Society
Press.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210, World
Wide Web Consortium, Mar. 1998.

[6] F. Eliassen, A. Andersen, G. S. Blair, F. Costa, G. Coulson,
V. Goebel, O. Hansen, T. Kristensen, T. Plagemann, H. O.
Rafaelsen, K. B. Saikoski, and W. Yu. Next Generation
Middleware: Requirements, Architecture and Prototypes. In
Proceedings of the7th IEEE Workshop on Future Trends in
Distributed Computing Systems, pages 60–65. IEEE Com-
puter Society Press, Dec. 1999.

[7] D. C. Fallside. XML Schema. Technical Report
http://www.w3.org/TR/xmlschema-0/, World Wide Web
Consortium, Apr. 2000.

[8] D. Fritsch, D. Klinec, and S. Volz. NEXUS Positioning and
Data Management Concepts for Location Aware Applica-
tions. InProceedings of the 2nd International Symposium on
Telegeoprocessing, pages 171–184, Nice-Sophia-Antipolis,
France, 2000.

[9] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering,
24(5), 1998.

[10] D. Gelernter. Generative Communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[11] IBM. T spaces. http://almaden.ibm.com/cs/TSpaces.
[12] J. Kiniry and D. Zimmerman. A Hands-On Look at Java

Mobile Agents.IEEE Internet Computing, 1(4), 1997.
[13] F. Kon, M. Roḿan, P. Liu, J. Mao, T. Yamane, L. M. aes,

and R. Cambpell. Monitoring, Security, and Dynamic Con-
figuration with thedynamicTAOReflective ORB. InIn-
ternational Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’2000), pages
121–143, New York, Apr. 2000. ACM/IFIP.

[14] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cy-
benko. Agent Tcl: Targeting the Needs of Mobile Comput-
ers. IEEE Internet Computing, 1(4):58–67, 1997.

[15] E. Kovacs, K. Rohrle, and M. Reich. Integrating Mobile
Agents into the Mobile Middleware. InProc of the 2nd
Int. Workshop on Mobile Agents (MA’98), volume 1477 of
LNCS, pages 124–135. Springer, 1998.

[16] T. Ledoux. OpenCorba: a Reflective Open Broker. InReflec-
tion’99, volume 1616 ofLNCS, pages 197–214, Saint-Malo,
France, 1999. Springer.

[17] P. Maes. Concepts and Experiments in Computational Re-
flection. In Proceedings of OOPSLA ’87, pages 147–155,
Orlando, Florida, Oct. 1987. ACM Sigplan Notices.

[18] C. Mascolo, L. Capra, and W. Emmerich. An XML-
based Middleware for Peer-to-Peer Computing. InProc.
of the International Conference on Peer-to-Peer Computing
(P2P2001), Linkopings, Sweden, Aug. 2001. To appear.

[19] R. Mettala. Bluetooth Protocol Architecture.
http://www.bluetooth.com/developer/whitepaper/, Aug.
1999.

[20] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A Mid-
dleware for Physical and Logical Mobility. InProceedings
of the 21st International Conference on Distributed Com-
puting Systems (ICDCS-21), May 2001. To appear.

[21] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible Update Propagation for Weakly Con-
sistent Replication. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP-16), pages
288–301. ACM Press, 1997.

[22] M. Satyanarayanan. Mobile Information Access.IEEE Per-
sonal Communications, 3(1):26–33, Feb. 1996.

[23] I. Sun Microsystem. Java 2 Platform, Micro Edition.
http://java.sun.com/j2me/, 2000.

[24] I. Sun Microsystem. Mobile Information Device Profile
(MIDP) Specification. http://java.sun.com/products/midp/,
2000.

[25] L. Technologies. WaveLan. http://www.wavelan.com, 2000.
[26] J. Waldo. Javaspaces specification 1.0. Technical report, Sun

Microsystems, March 1998.
[27] D. Wong, N. Paciorek, and D. Moore. Java-based Mobile

Agents.Communications of the ACM, 42(3):92–102, 1999.

