

Adaptable Mobile Applications: Exploiting Logical Mobility in Mobile Computing

Stefanos Zachariadis, Cecilia Mascolo & Wolfgang Emmerich

Department of Computer Science
University College London
Gower Street
London, WC1E 6BT

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Proposed solution: SATIN
- Future Work

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Proposed solution: SATIN
- Future Work

Physical Mobility

- Ubiquity of mobile computing devices
 - Laptops, PDAs, cellular phones
- Variable connectivity
 - Bluetooth, 802.11x, GSM/GPRS/CDMA/.../3G, infrared, docking
 - Nomadic, ad-hoc, base station mobility
 - Variable in cost and type
- Numbers increasing
 - 2002: 15.5 million PDAs, 2005: 700 million Bluetooth chips (Gartner)

Characteristics

- Limitations (compared to traditional computing)
 - Memory, battery power, CPU power, erratic (expensive) connectivity
 - Improving but lagging compared to desktop machines
- Different usage paradigms
 - Input/output
 - Speed, ease of use, frequent but brief usage
 - E.g. Check schedule
 - Reports show that users rarely install applications on mobile devices
 - Applications need to cater to users' needs throughout the device's lifetime

Characteristics (2)

- Heterogeneity!
 - Device/Hardware (Physical)
 - Software/Middleware (Logical)
 - Network
- Very dynamic environment

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Proposed solution: SATIN
- Future Work

Logical Mobility

- Ability to sent parts of an application (or migrate/clone a process) to another host
- Popularised by Java
- Classification into paradigms
 - Client/Server (CS)
 - Remote Evaluation (REV)
 - Code on Demand (COD)
 - Mobile Agents (MA)
- Various middleware (mobile & stationary) systems exploit this

Examples of Logical Mobility

- Antivirus updates
- RPCs
- Browser "enhancements"
- Ringtone/Game download
- Distributed computing
- Automatic update rollouts

Advantages of Logical Mobility

- Flexibility
 - Dynamic applications
- Automatic software update
 - Maintenance
- New abilities
- Use of remote resources

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Proposed solution: SATIN
- Future Work

Observed Trends

- Further decentralisation of computing
- Computers: Smaller, faster, more resources, more personal, ubiquitous
 - Users are starting to carry portable processing environments of respectable computing ability
- Networking is pivotal
 - Devices can connect to various different types of networks at different situations: ad-hoc (Bluetooth, IrDA), the Internet (GSM/GPRS, 802.11b, ...)

Motivation

- Potential of ubiquity of current devices largely untapped
 - Little interoperability because of heterogeneity
- New class of applications
- Investigate the use of Logical Mobility in mobile computing middleware
- Prove that logical mobility can bring tangible benefits to mobile application developers and users
 - Benefits include faster operation, less user-interaction, services offered based on context and location, reduced cost, better user experience
- Self-Organizing Systems

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future Work

Deficiencies of Related Work

- Limited use of LM
 - Usage of LM to provide reconfigurability to middleware
 - ReMMoC, UIC
 - Allows interaction with services provided by heterogeneous platforms/middleware systems
 - Usage of particular LM paradigms to provide particular services to applications
 - LIME (MA), PeerWare (REV), Jini (COD)
 - Others are not really geared for mobile networks
 - In Fargo-DA disconnections are announced

Current Mobile Application Engineering (PalmOS)

- Event driven, single threaded applications
- Files (Applications & Data) stored in main memory (usually 8MB).
 - Files stored as databases (collection of records)
- Developers compile application into a single file (Palm Resource, PRC)
- Application data can be stored in multiple Palm database files (PDBs).

Current Mobile Application Engineering (2)

- Very limited use of libraries
- Applications have a unique identifier,
 Creator ID (4 bytes)
 - Registered on a central database
 - Identifies PRCs & PDBs to the OS

What is Wrong with this Model?

- Very limited code sharing
 - On the device itself, between different devices
- Monolithic applications
- Difficulty to update application
- No versioning scheme for libraries
- No standard way to know which PRCs a device has.
- Difficulty to install applications
 - Statistics suggest that majority of users never install any 3rd party application

Outline

- Physical Mobility
- Logical Mobility
- Motivation
- Limitations of related work
 - Mobile application development
- Proposed solution: SATIN
- Future Work

Proposed Solution: SATIN

- Component based middleware
- Stresses modularity
 - Encourages decoupling of applications into modules
- Allows for static & dynamic configuration
- Minimal footprint
- Relies on developers following guidelines
- Offer usage of LM
- Lightweight
 - Runs in PDAs
- Network-independent
 - IP

Capabilities

- A SATIN component is a capability
 - Ranges from applications to libraries
 - SATIN applications are collections of capabilities with an "executable" one.
 - SATIN is a collection of capabilities
 - A capability provides some functionality to either the user or other capabilities.
- Provide a versioning scheme
 - Revisions of a capability
- Unique Identification
- Dependency scheme

The Core

- The SATIN Core is the main component of the middleware
- The Core is a registry for Capabilities.
 - All Capabilities can be accessed via the Core
- The Core identifies Capabilities by their identifier
- Core is a Capability itself

The Core & The Registrar

- Registration of new Components through a Registrar
- If no registrar is available, then SATIN is statically configured
- Registrar can receive capabilities from many sources (local & remote)
- Implementations of the Core may be distributed

Example Capabilities: Advertising and Discovery

- Paramount importance
- Heterogeneity!
 - Different ways to do it
 - Multicast
 - Centralised registry (Core)
 - Interoperability with other middleware platforms (e.g. Jini)

Example Capabilities: Advertising and Discovery [2]

- What to advertise?
 - Capabilities
- Advertising and Discovery techniques are themselves SATIN capabilities
- Capabilities choose which advertisers can advertise them
 - Using the Capability Identifier
- Capabilities choose advertising message
 - XML based
 - <capability id=FTP><port>21</port></capability>
 - Advertiser-independent
- Recursion:
 - Advertisers advertising advertisers
 - · Discovery of multicast groups, etc.

Principles: Logical Mobility

- Encapsulation
 - LM paradigms
 - Language abstractions
 - Group various LM entities together
 - Signature
 - Identification
 - Requesting/sending
 - Deploying (containers/hosting)

SATIN's Approach to LM

- Decoupled nature of SATIN offers itself for use of LM
 - Capabilities
- Three entities represent LM to SATIN
 - Logical Mobility Units (LMUs)
 - Extendable Capabilities
 - Logical Mobility Deployment Capability (LMDC)

LMUs

- Container
- Sent around the network
- Encapsulation of Classes, Object, RPCs and Data
- Dependency scheme based on capability identification
- Size information
- Source & Target information
- Can be Signed
- Unpacker
 - Threads

Extendables/LMDC

- Extendable capabilities can receive and host LMUS
 - Can accept or reject the LMU
 - Core or any other capabilty
- LMDC abstracts the usage of Logical Mobility
 - Requesting, sending, receiving, deploying

Example Application: Dynamic Launcher

- Similar in Functionality to PDA Launchers
- Installs Capabilities from multiple sources
 - Centralised Source, p2p...
 - Uses any discovery techniques installed to find capabilities available
 - Uses LMDC to request and receive capabilities
- Transparent update
 - Using any discovery techniques installed and LMDC

Dynamic Launcher [2]

Dynamic Launcher [3]

➤ Capabilities	×
Capabilities	
STN:MUITADUDISC (0. advorticable disabled) Install Capability × Filename? n, enable	e dį
STN:CAF /tmp/CentralDiscAdv.class nabled) STN:Load Cancel pled)	
STN:LMDC (0, advertisable, extendable, enabled STN:MONITORREG (0, enabled) STN:CAPABILITYREADER (0, enabled)	0

Some Numbers

- Prototype
 - J2SE
 - Personal Java & J2ME considered
- Sizes:
 - 62K dist/satin-20030714.jar
 - 24K lib/kxml2.jar
 - 40K lib/µcode.jar
- Times
 - Startup Time on PDA: 21 seconds
 - Memory Usage on PDA: 1155KB
 - Update to PDA from peer: 2063 ms

Future Work

- Further Evaluation
 - More Applications
 - Comparison to similar applications that don't use
 LM
- New Classes of Applications Possible
 - Self-Organisation
- Scalability

Conclusion

- Physical Mobility
 - Increased popularity
 - Increased abilities
- Logical Mobility
 - Principles
 - Harness potential of mobile devices
- SATIN
 - Superset of previous approaches
 - Flexible use of LM to applications