
SATIN: A Component Model for
Self-Organisation

Stefanos Zachariadis
Joint Work With Dr. Cecilia Mascolo and

Dr. Wolfgang Emmerich

Software Systems Engineering &

Mobile Systems Groups

Department of Computer Science

University College London

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Outline

• Background
• Component Model
• Middleware System
• Implementation
• Related Work
• Future Work
• Conclusion

Trends in (Mobile) Computing
(Hardware)

• They are getting faster
• They are getting connected
• They are getting smaller
• They are getting everywhere

Trends in (Mobile) Computing
(Software)

• Not much innovation
• Monolithic apps
• Lack of middleware
• Static apps

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

128KB 16MHz Serial
160x160BW

2003:
Palm Tungsten T3

64MB 400MHz
Serial/USB/Bluetooth/Infrared
320x480 24bit, Sound, Expansion

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

PalmOS 1.0 (DateBook)

2003:
Palm Tungsten T3

PalmOS 5.2 (Calendar)

Market Saturation

The Mobile Environment

• Limitations (compared to traditional computing)
– Memory, battery power, CPU power, erratic (expensive)

connectivity
– Improving but lagging still

• Different usage paradigms
– Input/output
– Speed, ease of use, frequent but brief usage

• E.g. Check schedule

– Applications need to cater to users’ needs throughout the device’s
lifetime

• Ubiquitous Computing -> Dynamic Environment

• The need for dynamic change

Self - Organisation

• System adaptation to accommodate
changes to its requirements

• Suitability for mobility
• Approaches
– Expert Systems
– Genetic Algorithms

Logical Mobility

• Ability to sent parts of an application (or
migrate/clone a process) to another host

• Popularised by Java
• Classification into paradigms
• Encapsulate Functionality

Components

• Component = functionality
• Coarse-grained adaptation guide
• Monolithism vs Componentisation

SATIN

• System Adaptation Targeting Integrated
Networks

• Component Model & Middleware
• Low Footprint
• Interaction & Autonomy

Component Model Outline

• Local Component Model
• Late - Binding
• Logical Mobility as a first class citizen
• Everything is a component

Components

• Encapsulation of functionality
• Facets
• Properties & Attributes
– Extensible
– Heterogeneity (Debian)
– Request template
– Identifier, Versioning, Dependencies

Container

• Component Specialisation
• Registry/host of components
– References to all components

• One on each instance
• Dynamic Registration/Removal

(delegated)
– Registrars can have different policies

• Listeners/Custom Notification

Distribution

• Logical Mobility Entity (LME)
– Generalisation of class, object, data,

component

• Logical Mobility Unit (LMU)
– Composition of LMEs
– Attributes & Properties
– Handler
– Fine grained mobility

Reflective Components

• Component Specialisation
• Components that can be changed
– LMU Recipients
– The Container is Reflective
– Inspect LMUs
• Acceptance
• Rejection
• Partial Acceptance
• Handler Instantiation

Deployer

• Component Specialisation
• At least one in each instance
• Abstracting sending/receiving/requesting

LMUs
• Uses attributes for matching
• Synchronous and Asynchronous primitives
• Can be used to implement all paradigms

Middleware

• Component Based
– “Equal” Components

• Advertising & Discovery
– Advertisable Components
• Advertising message

– Advertiser Components
• Register Advertisable Components

– Discovery Components
• Listeners / Notification

Example Application: Dynamic
Launcher

• Similar in Functionality to PDA Launchers
• Installs Components from multiple sources
– Centralised Source, p2p...
– Uses any discovery components installed to find

components available
– Uses Deployer to request and receive components

• Transparent update
– Using any Discovery components installed and

Deployer to find and install updates

Dynamic Launcher [2]

Dynamic Launcher [3]

Example Application: Music
Player

Example Application: Scripting
Framework

­=Initialising the Container=­

­=Container (ID=STN:CONTAINER,FACETS=Discovery,VER=1)

 initialised=­

­=Creating Self=­

­=Registering Self (ID=STN:SHELL)=­

­=This is SATIN version 0.8=­

­=Running on Linux 2.6.5­1.358 / i386=­

­=Hostname: hamsalad.cs.ucl.ac.uk=­

­=Java 1.4.2_04 / Sun Microsystems Inc.=­

­=A reference to the container will be made available via the

 object reference container=­

­=Starting the beanshell...=­

BeanShell 2.0b1.1 ­ by Pat Niemeyer (pat@pat.net)

bsh % Component c=container.getComponent(``STN:SHELL'');

Some Numbers

• J2ME cdc personal profile
• 84KB jar
• Dynamic Launcher

– 22KB jar
– Startup Time on PDA: 21 seconds
– Memory Usage on PDA: 1155KB
– Update to PDA from peer: 2063 ms

• Music Player
– 3.6KB jar application

– 105KB jar codec

• SATIN Scripting Framework
– 280.6KB jar

Related Work

• Logical Mobility Middleware
– Limited Use of LM
• Too Specific (Lime, PeerWare, Jini, XMIDDLE)

– Not geared for mobility
• Disconnections pre-announced (Fargo-DA)
• Fixed advertising and discovery (one.world)

Related Work (2)

• Component Model Systems
– Distributed ones unsuitable
• Large
• No autonomy (P2PComp, PCOM)

– Local Component Models
• Heterogeneity
• Some make a distinction between Component

providers and consumers (Beanome/OSGi)

Future Work

• SEINIT
• Q-CAD
• PhD Thesis :-)

Conclusion
• The SATIN Component model

– Distribution as a service

– Attributes for description

– Applications & System: interconnected local components

– Reconfiguration of Local Components

• The SATIN Middleware System

– Componentised Middleware (Advertising and Discovery)

– Logical Mobility as a Computational Primitive

• Security?

