
Engineering Adaptable Mobile
Systems Using SATIN

Stefanos Zachariadis
Joint Work With Cecilia Mascolo and

Wolfgang Emmerich

Software Systems Engineering &

Mobile Systems Interest Groups

Department of Computer Science

University College London

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Outline

• Background
• Logical Mobility
• Component Model
• Middleware System
• Implementation/Evaluation
• Related Work
• Future Work
• Conclusion

Trends in (Mobile) Computing
(Hardware)

• They are getting faster
• They are getting connected
• They are getting smaller
• They are getting everywhere

Trends in (Mobile) Computing
(Software)

• Not much innovation
• Monolithic apps
• Lack of middleware
• Static apps

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

128KB 16MHz Serial
160x160BW

2003:
Palm Tungsten T3

64MB 400MHz
Serial/USB/Bluetooth/Infrared
320x480 24bit, Sound, Expansion

Trends in (Mobile) Computing
(Example)

1997:

US Robotics Pilot 1000

PalmOS 1.0 (DateBook)

2003:
Palm Tungsten T3

PalmOS 5.2 (Calendar)

Black Box -> Market Saturation

The Mobile Environment
• Limitations (compared to traditional computing)

– Memory, battery power, CPU power, erratic (expensive)
connectivity

– Improving but lagging still

• Different usage paradigms
– Input/output
– Speed, ease of use, frequent but brief usage

• E.g. Check schedule

– People don't install 3rd party applications

– Applications need to cater to users’ needs throughout the device’s
lifetime

• Ubiquitous Computing -> Dynamic Environment

• The need for dynamic change

Adaptation

• Change to accommodate changes to its
requirements

– Informal: Adaptation is the process by which a
system can dynamically acquire or drop
functionality.

• Suitability for mobility

• Architecture & Means for Adaptation

– Not Decision

• How to adapt?

• How to engineer an adaptable system?

Logical Mobility

• Ability to sent parts of an application (or
migrate/clone a process) to another host

• Popularised by Java
• Classification into paradigms
• Encapsulate Functionality
• Numerous examples

– Active networking, resource exploitation...
– Need for systematic and flexible use of all

paradigms
– Send & receive

Logical Mobility Framework

Logical Mobility Framework (2)

• Modeled as Concurrent Processes (FSP)

• Can be used to implement any paradigm

Components

• Component = functionality
• Coarse-grained adaptation guide
• Monolithism vs Componentisation

SATIN

• System Adaptation Targeting Integrated
Networks

• Component Meta Model & Middleware
• Low Footprint
• Interaction & Autonomy

Component Model Outline

• Local Component Model
• Late - Binding
• Logical Mobility as a first class citizen

– by encapsulating and offering the platform

• Everything is a component

Component Model Outline (2)

Components

• Encapsulation of functionality
• Facets
• Properties & Attributes

– Extensible
– Heterogeneity (Debian)
– Request template
– Identifier, Versioning, Dependencies

Container

• Component Specialisation
• Registry/host of components

– References to all components

• One on each instance
• Dynamic Registration/Removal

(delegated)
– Registrars can have different policies

• Listeners/Custom Notification

Component Model Outline (2)

Distribution

• Use LM platform defined before
• Logical Mobility Entity (LME)

– Generalisation of class, object, data and
component

• Application is a Reflective Component

Reflective Components

• Component Specialisation
• Components that can be changed

– LMU Recipients
– The Container is Reflective
– Inspect LMUs

• Acceptance
• Rejection
• Partial Acceptance
• Handler Instantiation

Deployer

• Component Specialisation
• At least one in each instance
• Abstracting sending/receiving/requesting

LMUs
• Uses attributes for matching
• Synchronous and Asynchronous primitives
• Can be used to implement all paradigms

Component Model Outline (2)

Middleware

• Component Based
– “Equal” Components

• Advertising & Discovery
– Advertisable Components

• Advertising message

– Advertiser Components
• Register Advertisable Components

– Discovery Components
• Listeners / Notification

Middleware (2)

Example Application: Dynamic
Launcher

• Similar in Functionality to PDA Launchers
• Installs Components from multiple sources

– Centralised Source, p2p...
– Uses any discovery components installed to find

components available
– Uses Deployer to request and receive components

• Transparent update
– Using any Discovery components installed and

Deployer to find and install updates

Dynamic Launcher [2]

Dynamic Launcher [3]

Example Application: Music
Player

ESA PAN Project

Joint Work with Lionel Sacks, Peter Kirstein and Saleem Bhatti

Req: http://foo:8081/abe1.j2k

Req: http://foo:8082/abe1.j2k

Req: http://bar:80/abe1.j2k

Req: http://bar:80/abe1.j2k

Refresh:
Retrigger!

ppm j2k

JJ
Encode

Off Line,
Preprepared images

Server

Traf
Cont

Null
Proxy

TC
PAN

Pic
3

Pic
1/2Max

Burst

Port 8081

Port 8082

foo

bar

Control:
Invoke TC PAN component
-do nothing
- change res: 1/2/3/4/5
- change rate: 3./0.3/0.03…§

Satin
Mon

Multimedia Content Provider Satellite Customer Network

Other
• Scripting Framework

– Open Source BeanShell Adaptation

• Q-CAD

– Resource Discovery & Decision Logic

– Joint Work With Licia Capra

• ZION

– MSc Project

– Usability study

• SEINIT http://www.seinit.org/

– EU Project for pervasive computing security

– Demo @ IST 2004

Some Numbers

• J2ME cdc personal profile
• 84KB jar
• Dynamic Launcher

– 22KB jar
– Startup Time on PDA: 21 seconds
– Memory Usage on PDA: 1155KB
– Update to PDA from peer: 2063 ms

• Music Player
– 3.6KB jar application

– 105KB jar codec

– Memory overhead: 19KB

Related Work

• Logical Mobility Middleware
– Limited Use of LM

• Too Specific (Lime, PeerWare, Jini, XMIDDLE)

– Not geared for mobility
• Disconnections pre-announced (Fargo-DA)
• Fixed advertising and discovery (one.world)

Related Work (2)

• Component Model Systems
– Distributed ones unsuitable

• Large
• No autonomy (P2PComp, PCOM)

– Local Component Models
• Heterogeneity
• Some make a distinction between Component

providers and consumers (Beanome/OSGi)

Conclusion
• Adaptation of Mobile Systems

• Platform for Logical Mobility

• The SATIN Component model

– Distribution as a service

– Attributes for description

– Applications & System: interconnected local components

– Reconfiguration of Local Components

• The SATIN Middleware System

– Componentised Middleware (Advertising and Discovery)

– Logical Mobility as a Computational Primitive

• Performance tradeoff small

Any Questions?

Papers and more information at

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Thank you!

