

Software in Mobility

exploiting logical mobility techniques in mobile computing middleware

Stefanos Zachariadis

http://www.cs.ucl.ac.uk/staff/s.zachariadis

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Physical Mobility

- Ubiquity of mobile computing devices
 - Laptops, PDAs, cellular phones
- Variable connectivity
 - Bluetooth, 802.11x, GSM/GPRS/CDMA/.../3G, infrared, docking
 - Nomadic, ad-hoc, base station mobility
 - Variable in cost and type
- Numbers increasing
 - 2002: 15.5 million PDAs, 2005: 700 million Bluetooth chips (Gartner)

Characteristics

- Limitations (compared to traditional computing)
 - Memory, battery power, CPU power, erratic (expensive) connectivity
 - Improving but lagging still
- Different usage paradigms
 - Input/output
 - Speed, ease of use, frequent but brief usage
 - E.g. Check schedule
 - Reports show that users rarely install applications on mobile devices
 - Applications need to cater to users' needs throughout the device's lifetime

Characteristics (2)

- Heterogeneity!
 - Device/Hardware (Physical)
 - Software/Middleware (Logical)
 - Network
- Very dynamic environment

Example: SonyEricsson P800 Mobile Phone ("Smartphone")

- Released in December 2002
- Symbian OS 7.0
- ARM9 200MHz CPU
- 12 MB RAM (+ "Memory Stick" External)
- 128g
- J2ME
- 3 Network interfaces
 - Bluetooth, GSM/GPRS, Infrared
 - Ability to mediate between interfaces (routing)

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Logical Mobility

- Ability to sent parts of an application (or migrate/clone a process) to another host
- Popularised by Java
- Classification into paradigms
 - Client/Server (CS)
 - Remote Evaluation (REV)
 - Code on Demand (COD)
 - Mobile Agents (MA)
- Various middleware (mobile & stationary) systems exploit this

Examples of Logical Mobility

- Antivirus updates
- RPCs
- Browser "enhancements"
- Ringtone/Game download
- Distributed computing
- Automatic update rollouts

Advantages of Logical Mobility

- Flexibility
 - Dynamic applications
- Automatic software update
 - Maintenance
- New abilities
- Use of remote resources
- •

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Observed Trends

- Further decentralisation of computing
- Computers: Smaller, faster, more resources, more personal, ubiquitous
 - Users are starting to carry portable processing environments of respectable computing ability
- Networking is pivotal
 - Devices can connect to various different types of networks at different situations: ad-hoc (Bluetooth, IrDA), the Internet (GSM/GPRS, 802.11b, ...)

Motivation

- Investigate the use of Logical Mobility in mobile computing middleware
- Prove that logical mobility can bring tangible benefits to mobile application developers and users
 - Benefits include faster operation, less userinteraction, services offered based on context and location, reduced cost, better user experience

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Deficiencies of Related Work

- Limited use of LM
 - Usage of LM to provide reconfigurability to middleware
 - ReMMoC, UIC
 - Allows interaction with services provided by heterogeneous platforms/middleware systems
 - Usage of particular LM paradigms to provide particular services to applications
 - LIME (MA), PeerWare (REV), Jini (COD)
 - Others are not really geared for mobile networks
 - In Fargo-DA disconnections are announced

Current Mobile Application Engineering (PalmOS)

- Event driven, single threaded applications
- Files (Applications & Data) stored in main memory (usually 8MB).
 - Files stored as databases (collection of records)
- Developers compile application into a single file (Palm Resource, PRC)
- Application data can be stored in multiple Palm database files (PDBs).

Current Mobile Application Engineering (2)

- Very limited use of libraries
 - OS allows applications to call other PRCs as a subroutine
- Applications have a unique identifier,
 Creator ID (4 bytes)
 - Registered on a central database
 - Identifies PRCs & PDBs to the OS

What's Wrong with this Model?

- Very limited code sharing
 - On the device itself, between different devices
- Monolithic applications
- Difficulty to update application
- No versioning scheme for libraries
- No standard way to know which PRCs a device has.
- Difficulty to install applications
- Statistics suggest that majority of users never install any 3rd party application Tuesday, November 25, 200.

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Our Requirements

- Lightweight middleware (geared for mobile devices)
- Support for different networks
- Modular
 - Encourage decoupling of applications
- Ability to advertise & discover modules
 - Important to know what is available in the current context
- Offer direct access to LM
 - Dynamic applications

Tuesday, November 25, 200.

Proposed Solution: SATIN

- Component based middleware
- Allows for static & dynamic configuration
- Minimal footprint
- Encourages decoupling of applications into modules
- Relies on developers following guidelines

Principles: Architecture

- Modular
- Stresses componentisation
- Component identification
 - Dependency scheme
 - Versioning scheme
 - Easy to transmit
- Dynamic addition and removal of modules

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
 - Capabilities & the Core
- Future work

Capabilities

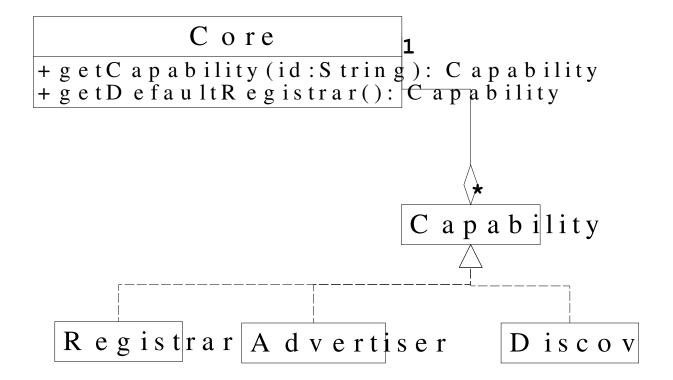
- A SATIN component is a capability
 - Ranges from applications to libraries
 - SATIN applications are collections of capabilities with an "executable" one.
 - A capability provides some functionality to either the user or other capabilities.
- Provide a versioning scheme
 - Revisions of a capability

Capabilities (2)

- Have a unique identifier (String)
 - Local identifiers
 - Global identifiers (PalmOS)
- Provide a dependency scheme

The Core

- The SATIN Core is the main component of the middleware
- The Core is a registry for Capabilities.
 - All Capabilities can be accessed via the Core
- The Core identifies Capabilities by their identifier
- Core is a Capability itself


The Core & The Registrar

- Core needs a Registrar to add new Capabilities
 - Can have a default registrar
 - Registrar is a capability itself
- If no registrar is available, then SATIN is statically configured
- Registrar can receive capabilities from many sources (local & remote)
- Implementations of the Core may be distributed

Capability Types

- Applications
 - run()
- Advertisable Capabilities
 - Supply advertising message in an XML-based description protocol
 - <port>4662</port>

Recap (Core & Capabilities)

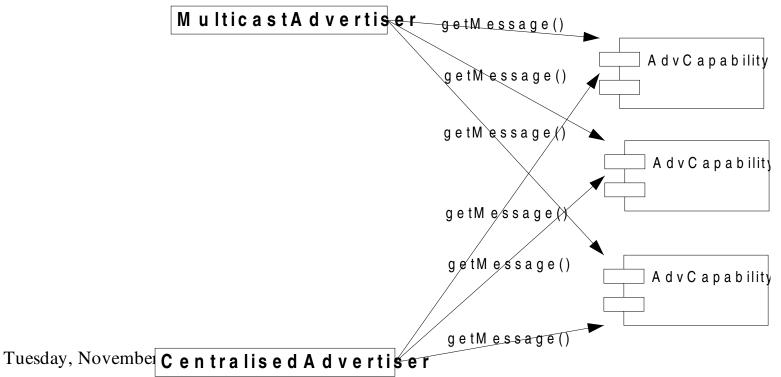
Tuesday, November 25, 200.

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
 - Capabilities & the Core
 - Advertising & Discovery
- Future work

Principles: Advertising & Discovery

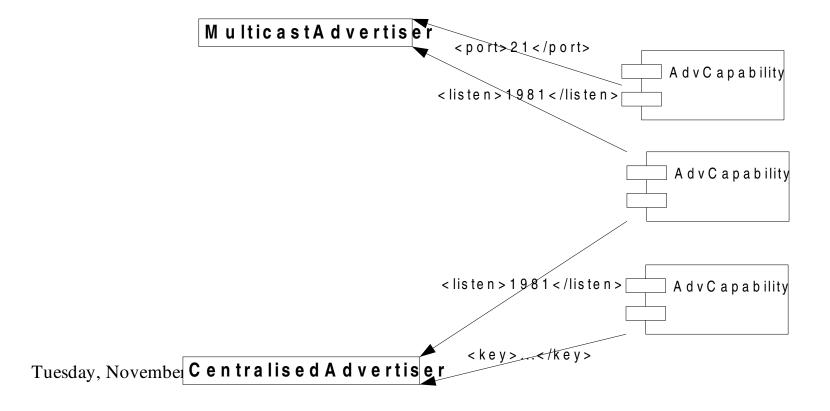
- Paramount importance
- Heterogeneity!
 - Different ways to do it
 - Multicast
 - Centralised registry (Core)
 - Interoperability with other middleware platforms (e.g., Jini)
- Allow components to register for existence of particular functionality
 - Ability to react to context changes

Advertised Capabilities, Advertising & Discovery

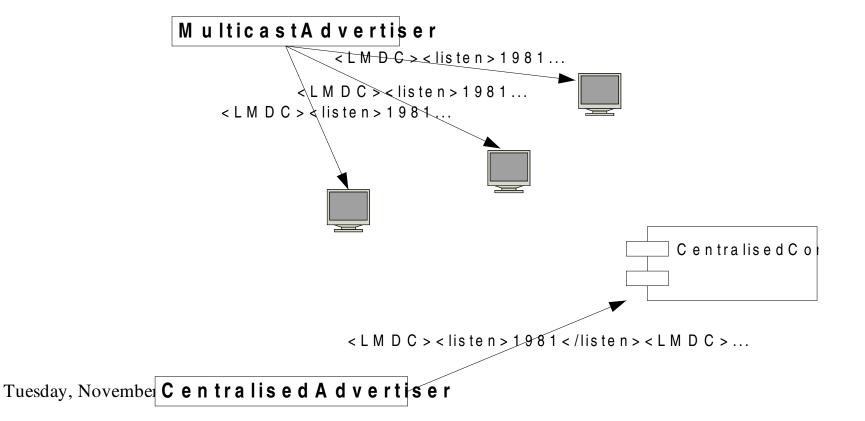

- Advertisers query Core for Advertisable Capabilities
 - Can specify which advertisers to allow advertising them
- Advertisers can be advertiseable capabilities themselves
 - Allows discovery of advertising techniques (say a multicast group)
- Advertisers create advertising message
 - <ed2k version="1"><port>4662</port></ed2k>

Context Discovery

- Applications (Capabilities) can register with discovery services for notification when a particular Capability is in reach
 - Using the XML description message
- Allows for reaction to context changes


Recap (Advertising)

Advertisers (periodically) query
 Advertisable Capabilities for message


Recap (Advertising) [2]

Message returned to selected advertisers

Recap (Advertising) [3]

Advertising takes place

Outline

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
 - Capabilities & the Core
 - Advertising & Discovery
 - Logical Mobility
- Future work

Tuesday, November 25, 200.

Principles: Logical Mobility

- Ability to encapsulate all LM paradigms
 - Hosting environment
 - Requesting / sending
 - Deployment
 - Containers, acceptance/rejection
- Language abstractions
 - Objects, Classes, RPCs...
 - Code which does not map directly to the underlying platform is data
- Group various LM entities together
 - How to use unknown code?
- Signature
- Identification

SATIN's Approach to LM

- Decoupled nature of SATIN offers itself for use of LM
 - Capabilities
- Three entities represent LM to SATIN
 - Logical Mobility Units (LMUs)
 - Extendable Capabilities
 - Logical Mobility Deployment Capability (LMDC)

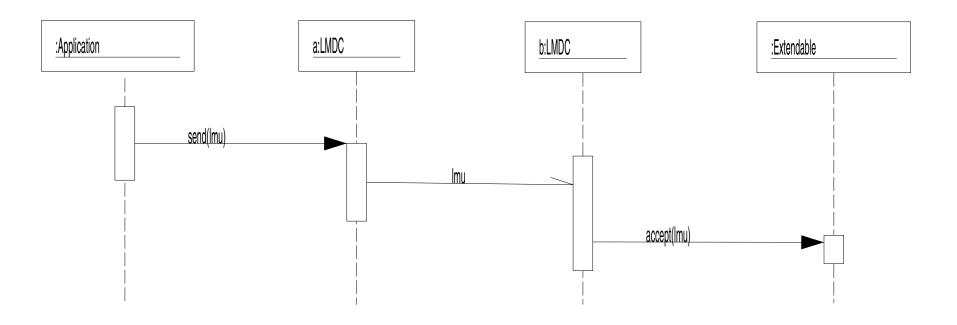
LMUs

- Container
- Sent around the network
- Encapsulation of Classes, Object, RPCs and Data
- Dependency scheme based on capability identification
- Size information
- Source & Target information
- Can be Signed
- Unpacker
 - Threads

Extendables

- Receptacles for LMUs
 - Implemented as interfaces
- Core or any other capability
- Can accept or reject the LMU

LMDC


- Responsible for requesting and receiving LMUs
- Deploys LMUs in Extendables
- Capabilities send LMUs via the LMDC

Discovery, LMDC & LMUs

- Hosts can register for the advertising of specific functionality with an Advertiser capability
- Upon notification use the LMDC to receive required functionality
 - eg. codec

Recap (LM)

Sending an LMU in SATIN

Tuesday, November 25, 200.

Some Numbers

- Prototype
 - **J2SE**
 - Personal Java & J2ME considered
- 40K dist/satin-20030314.jar
- 24K lib/kxml2.jar
- 40K lib/μcode.jar

Outline

- Physical Mobility
- Logical Mobility
- Motivation & Hypothesis statement
- Limitations of related work
 - Mobile application development
- Requirements
- Proposed solution: SATIN
- Future work

Future Work

- Looking for the killer app
 - Mobile code routing (NOT)
 - Adaptive applications
- Evaluation of approach
 - New applications possible
 - Comparison to applications that don't use LM
 - Definition of "best"?

Where we are so far

- Identified hypothesis statement
- Identified advantages of LM
- Identified shortcomings of related work
- Developed/implemented architecture
- Next Steps:
 - Applications
 - Evaluation

Conclusion

- Physical Mobility
 - Increased popularity
 - Increased abilities
- Logical Mobility
 - Principles
 - Harness potential of mobile devices
- SATIN
 - Superset of previous approaches
 - Flexible use of LM to applications

Logical Mobility?

- Popularity of bytecode
 - Java, .NET IL
- Interpreted languages (Scripts)
- Application profiles & data?