

RUNES

The RUNES EU Project

Paolo Costa, Luca Mottola, Gian Pietro Picco
Dip. Di Elettronica ed Informazione

Politecnico di Milano

Geoff Coulson
Department of Computing

Lancaster University

Cecilia Mascolo, Stefanos Zachariadis
Department of Computer Science

University College London

The RUNES Middleware System

2

RUNES

Outline

• Background and Motivation
• RUNES Component Metamodel
• RUNES Middleware Services
• Implementation
• Related Work
• Conclusions

3

RUNES

Fire in the Road Tunnel!

• A Road Tunnel
– Lots of sensors deployed

• Cars/Trucks Going Through
– Vehicles/People have portable devices

• Crash!
– Road Tunnel Closes

• Emergency Team Goes In
– Equipped with life-saving PDAs

• How To Make Everything Work Together?

4

RUNES

RUNES?

• Reconfigurable Ubiquitous Network Embedded Systems
– inherently heterogeneous and dynamic

• the software of such systems tends to be ad-hoc
– little provision for generalisable and reusable abstractions and

services
• it’s hard to develop for such systems

– especially targeting multiple systems!
→ need for a generic programming platform

– need abstractions and services that can span the full range of
networked embedded systems

– need consistent mechanisms for configuring, deploying, and
reconfiguring systems

– must be small, simple, efficient and highly tailorable

5

RUNES

How Heterogenous?

• Sensor
– IEEE 802.15.4 (250kbps), 10kB RAM, 48kB

flash, 1MB storage, msp430 8MHz 16bit CPU

• PDA
– IEEE 802.11b (11MBps), 128MB flash, 128MB

RAM, 4GB storage, 400MHz StrongARM CPU

6

RUNES

The Grand Scheme of Things

MDA/ADL Meta-Programming

IDL / Component Metamodel

Middleware Middleware MiddlewareMiddleware Middleware

C/Linux Win32 J2ME TinyOS Contiki FreeRTOS

#include <runes.h>

void hello();

Middleware

A
u
t
o
m
a
t
e
d

7

RUNES

The Awful Truth

MDA/ADL Meta-Programming

IDL / Component Metamodel

Middleware Middleware MiddlewareMiddleware Middleware

C/Linux Win32 J2ME TinyOS Contiki FreeRTOS

#include <runes.h>

void hello();

Middleware

A
u
t
o
m
a
t
e
d

8

RUNES

Runes Middleware

• Component-Based System Aiming To:
• Tackle Heterogeneity

– Hardware Platforms
– OS
– Programming Languages

• Offer Reconfigurability
– Software
– Network

• Allows Networking of Heterogeneous nodes

9

RUNES

Reconfigurable

• Allows the static and dynamic reconfiguration of
the nodes
– Important because of the nature of the environment

• Static: different configurations installed
• Dynamic:

– upload and offload of components and code
dynamically

• Optional

– Dynamic component rebinding

10

RUNES

The RUNES Component Meta
Model

• RUNES is a Component-Based Middleware
• Component-Based Implies Adherence To

Particular Component Metamodel
– The RUNES Component Metamodel

• Developed for devices with scarce
resources in mind

11

RUNES

Aims

– a generic component-based programming
model
• Inspectable and adaptable at runtime
• ‘low level’ and efficient; can employ different

implementations on different hardware

– applied uniformly throughout the stack
• network, OS, middleware, applications
• all above uniformly realised as reconfigurable

compositions of components

12

RUNES

Component Metamodel

13

RUNES

Metamodel Elements

• central concepts:
– capsule
– component
– interface
– receptacle
– connector
– connector factory
– loader
– registry
– component framework

• uses IDL for prog. language independence

14

RUNES

Elements (1)
• Component Components are encapsulated units of

functionality and deployment that interact with other
components exclusively through “interfaces” and
“receptacles”.

• Interfaces are expressed in terms of sets of operation
signatures and associated data types (i.e. therefore each
component must expose its public operations in a user
defined interface).

• Receptacles A component must declare receptacles if it
‘requires interfaces’ from other components. Receptacles
are used to make explicit the dependencies of a
component on other components. A component can host
zero or more receptacles depending on its needs.

15

RUNES

Component Metamodel

16

RUNES

Elements (2)

• Connector is used to bind a pairs of receptacle and
interface thus enabling the creation of a configuration of
components.

• ConnectorFactory a component that creates
connectors.

• Capsule the namespace where everything lives - a
“container” for components. Also offers the main API

• Registry a memory manager - repository for metadata
(attributes)

• Loader a component that Loads other Components
– Components are loaded from Patterns

17

RUNES

Component Metamodel

18

RUNES

Main API (Pseudo OMG IDL)

comp_type load(pattern name)

status unload(comp_type t);

comp_inst instantiate(comp_type t);

status destroy(comp_inst comp);

connector bind(int_inst i, recep_inst r,

 connectorfactory b);

status putattr(ID entity, ID key, any value);

any getattr(ID entity, ID key);

Capsule

deployment environment (hardware and/or software)

target system

components

19

RUNES

Example

 Calculator components configuration

Calculator

ICalculator

MathProc SoftMath

IMath
IMath

Component

Interface

Receptacle

binding

Runtime
reconfiguration

Capsule

Capsule

20

RUNES

Component Frameworks

– re-usable, dynamically-deployable, software
architectures

• give structure, tailorability and constraint
• built as compositions of components and/or other CFs

– provide “life support environments” for plug-in
components in a particular area of concern

• example: a protocol stacking CF that takes plug-in protocols

– embody constraints on pluggability
• example: disallow stacking of IP plug-in above TCP plug-in
• constraint specification may be ad-hoc
• or may employ generic constraint languages such as OCL

(with automatically generated run-time machinery)
• or logic based languages (Prolog?)

21

RUNES

Component Frameworks (2)

• Current thinking is that CFs are “design
patterns”
– i.e. we can’t abstract common requirements

• I disagree
– plug(), unplug()
– Constraints expressed/validated with OCL or

Prolog

22

RUNES

Some example CFs

– network services
– distributed reconfiguration service
– location/context services
– advertising and discovery services
– protocol stacks

23

RUNES

Reconfiguration

24

RUNES

Advertising and Discovery

25

RUNES

Where We Are

• Java Implementation
– J2ME
– Released and operational
– CFs Already Exist

• C/Linux Implementation
– Released and operational
– CFs “being ported”

• C/Win32 Implementation
– Being worked on

26

RUNES

Where We Are (2)

• C/Contiki implementation
– “In progress”
– Design Decisions

• No component instances
• No customisable connectors
• Components are pre-load()ed

27

RUNES

Related Work

• CORBA CM
• OSGi
• Gravity
• one.world
• THINK
• DPRS
• …

28

RUNES

Conclusions

• RUNES Middleware is a component based
middleware
– Aiming at heterogeneous environments
– Allowing for static and dynamic

reconfiguration
– Cross-layered approach

29

RUNES

Any Questions?
• A Reconfigurable Component-based Middleware for

Networked Embedded Systems. Paolo Costa, Geoff
Coulson, Cecilia Mascolo, Luca Mottola, Gian Pietro Picco
and Stefanos Zachariadis Submitted for Journal
Publication. December 2005.

• The RUNES Middleware: A Reconfigurable Component-
based Approach to Networked Embedded Systems. Paolo
Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietro Picco
and Stefanos Zachariadis In 16th IEEE International
Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC05). IEEE Press. Berlin,
Germany. September 2005.

